图片区小说区区亚洲影院,国产在线观看无码的免费网站,免费无码日韩大胆视频网,免费一区二区无码东京热

人民網健康·生活

新模型可提前預測個體癡呆風險

2022年11月03日08:40 來源:科技日報

研究人員選取了排名前十的癡呆預測因子,構建了UKB-DRP癡呆預測模型。該模型能夠預測個體在五年、十年甚至更長時間內是否會發病,篩查出處于癡呆癥病程早期的群體,使高風險人群“記憶的橡皮擦”放緩步伐。

醫學上常見的癡呆癥包括阿爾茨海默病、血管性癡呆等,其中阿爾茨海默病占比最高。在我國60歲及以上人口中,約有1500萬名癡呆癥患者,其中1000萬人患有阿爾茨海默病。然而,對于癡呆癥,我們既沒有完全了解病理,也尚無有效的治療方法。

近日,復旦大學附屬華山醫院神經內科主任醫師郁金泰臨床研究團隊聯合復旦大學類腦智能科學與技術研究院馮建峰教授、程煒青年研究員算法團隊開發了UKB-DRP癡呆預測模型,該模型能夠預測個體在五年、十年甚至更長時間內是否會發病,篩查出處于癡呆癥病程早期的群體,使高風險人群“記憶的橡皮擦”放緩步伐。相關研究成果近日發表于柳葉刀子刊《電子臨床醫學》。

癡呆癥需早發現早干預

癡呆癥起病隱匿且病情發展緩慢,往往難以確定發病時間。作為癡呆癥最常見的類型,阿爾茨海默病可以使病人在發病前20年就出現病理改變,較長的潛伏期使病人在臨床診斷時常常錯過了最佳治療時間。目前,全世界已有超過5500萬人患有癡呆癥,據世衛組織預計,2050年全球癡呆癥患者將達到1.52億。

為了實現早發現、早干預、早治療,越來越多的研究團隊開始對癡呆癥的早期生物標記物進行研究,探尋其對疾病早期預測的有效性。

目前,全球范圍內對于癡呆癥風險預測的模型更多是基于傳統統計學方法構建的評分量表。例如經典的CAIDE評分、倫敦大學學院開發的DRS評分以及澳大利亞國立大學開發的ANU-ADRI評分等。郁金泰告訴科技日報記者,CAIDE評分是目前臨床十分常用的癡呆癥評分系統,該評分系統納入的指標數量少,易獲取、計算快,但評分相對精度略有欠缺。ANU-ADRI評分將既往研究發現的風險因子根據研究文獻中匯報的風險比值進行了系統的整合;DRS評分除了納入常規指標外,還更系統地考慮了被試者的病史和服藥史。這些評分量表均有重要的參考價值。

隨著人工智能在醫療領域的廣泛應用,越來越多的研究團隊開始利用基于海量數據推演的機器學習手段來構建預測模型。郁金泰告訴記者,部分機器學習模型在進行風險因子挑選時往往追求模型的預測精度而忽略了模型的潛在應用場景,例如部分模型的預測指標需要從PET影像或腦脊液中提取,這導致模型更多局限于科研領域,很難實現廣泛的現實應用。

“隨著民眾對于癡呆癥的重視,國內相關研究日漸增多,但在疾病風險預測這一領域尚無高質量的研究成果!庇艚鹛┱f。而UKB-DRP癡呆預測模型則填補了國內研究的空白,并實現了模型預測精度與應用場景的結合。

新型癡呆預測模型效能高

郁金泰團隊聯合馮建峰、程煒團隊通過“醫學+人工智能”的跨學科交叉融合,利用人工智能算法研究了海量的中老年人的健康信息,選取了排名前十的癡呆預測因子,構建了UKB-DRP癡呆預測模型。

研究團隊隨訪了超過40萬名40—69歲的非癡呆人群,在超過10年的隨訪過程中,5000余名參與者被診斷為癡呆癥。研究團隊將參與人群的基因、認知、生化、行為等多維度的健康相關指標全部作為潛在預測因子,采用機器學習對大樣本、高維度的復雜數據進行深入加工和挖掘,選出了重要程度排名前十的癡呆預測因子,并構建了UKB-DRP癡呆預測模型。這一模型對于全因癡呆及其重要亞型阿爾茨海默病均具有較高的預測效能。

“相比通過臨床先驗知識選取預測因子的候選策略,我們的研究將所有與癡呆癥潛在相關的指標都納入進來,通過機器學習選取預測因子,不僅可以反映更真實的情況,還發現了一些其他團隊沒有想到的指標!庇艚鹛┱f,“這種基于數據驅動的研究方法,幫助我們在更廣泛的表型數據中篩選出最優的預測因子組合,同時還擺脫了過分依賴臨床先驗知識對指標篩選的束縛!

根據指標對癡呆預測模型的重要性,機器學習算法排列并篩選出了十個癡呆預測因子,分別是年齡、載脂蛋白E(ApoE)基因、認知配對測試時長、腿部脂肪百分比、服藥數量、認知反應測試時長、呼氣峰流量、母親死亡年齡、慢性疾病和平均紅細胞體積。

AUC值是對患者發病概率進行預估時最常用的指標,AUC值越接近1.0代表著檢測方法預測的精度越高,模型的效果越好。研究顯示,UKB-DRP癡呆預測模型對全因癡呆的預測AUC值為0.85,而對阿爾茨海默病的預測AUC值可達0.86—0.89。郁金泰告訴記者,UKB-DRP癡呆預測模型的效能比現有的其他預測模型更為精準。同時,這些預測因子能夠在基層醫療機構中便捷獲取,具有較廣的應用前景。

新模型可在基層社區推廣

根據《中國阿爾茨海默病報告2021》,2019年導致我國人群死亡的疾病中,阿爾茨海默病已經上升到第5位。同時,該病還出現了年輕化的趨勢。在這種背景下,癡呆風險預測模型的研究意義重大。

郁金泰告訴記者,癡呆風險預測模型能在一定程度上促進藥物的研發和生產。“此前,國際上多種阿爾茨海默病的靶向調修藥物在臨床試驗階段宣告失敗,其中一個重要原因就是納入的受試者異質性較大。”郁金泰說,“癡呆風險預測模型能夠較為精準的識別高風險人群,為藥物臨床試驗的受試者招募提供參考。同時,對預測模型中具體指標在發病機制上的深入探究,也能在一定程度上給未來的新藥研發提供方向!

更為重要的是,癡呆風險預測模型還可以篩查出病程處于早期的癡呆癥人群,通過預防指南、使用藥物等干預方式,讓“記憶的橡皮擦”擦得更慢些。

“近期,渤健和衛材阿爾茨海默病新藥Ⅲ期臨床試驗結果非常好,可以延緩認知衰退。如果這款藥能夠上市,病人需要盡早服用,越早用效果越好,而UKB-DRP癡呆預測模型則可以將處于癡呆早期階段的人篩選出來,再通過各類干預手段延緩這類人群的病情發展。”郁金泰說。

郁金泰認為,癡呆風險預測模型的臨床推廣可以提高國內神經科醫師對臨床前期癡呆的甄別與診治能力,促進形成針對癡呆高危人群的篩查策略和規范化的癡呆評估體系,為老年人群的健康管理提供指導。在郁金泰看來,癡呆預測模型最主要的推廣途徑是基層社區。

目前國內基層社區越來越重視慢病管理,常常組織老年人開展集體體檢、自測慢病等活動,而癡呆癥風險的預測或可納入其中!爸袊姓J知障礙的、確診癡呆癥的患者多達千萬人,高危人群則要比確診患者更加龐大,所以癡呆風險預測模型作為一個早篩工具可以在社區實現推廣應用,發揮重要的慢病防控價值!庇艚鹛┱f。

UKB-DRP癡呆預測模型的指標可以通過問卷、簡單查體和血常規檢查獲取,相比其他模型的指標,獲取方式更加便捷,也更有可能廣泛應用于各級醫療單位開展的癡呆早期篩查。

未來,郁金泰團隊希望能夠進一步優化模型!巴ㄟ^模型評估,個體可以了解自己需要關注的問題,明白如何盡快干預、預防癡呆癥發病風險。未來,我們一方面希望能在納入更多指標的同時,讓指標盡可能簡單易得,另一方面希望實現更為精準的個體預測,甚至可以預測個體每一年的癡呆癥發病風險!庇艚鹛┱f。(實習記者 蘇菁菁)

(責編:喬業瓊、楊迪)


相關新聞